Horizontally Explicit and Vertically Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin Nonhydrostatic Model

نویسندگان

  • LEI BAO
  • ROBERT KLÖFKORN
  • RAMACHANDRAN D. NAIR
چکیده

A two-dimensional nonhydrostatic (NH) atmospheric model based on the compressible Euler system has been developed in the (x, z) Cartesian domain. The spatial discretization is based on a nodal discontinuous Galerkin (DG) method with exact integration. The orography is handled by the terrain-following heightbased coordinate system. The time integration uses the horizontally explicit and vertically implicit (HEVI) time-splitting scheme, which is introduced to address the stringent restriction on the explicit time step size due to a high aspect ratio between the horizontal (x) and vertical (z) spatial discretization. The HEVI scheme is generally based on the Strang-type operator-split approach, where the horizontally propagating waves in the Euler system are solved explicitly while the vertically propagating waves are treated implicitly. As a consequence, the HEVI scheme relaxes the maximum allowed time step to be mainly determined by the horizontal grid spacing. The accuracy of the HEVI scheme is rigorously compared against that of the explicit strong stability-preserving (SSP) Runge–Kutta (RK) scheme using several NH benchmark test cases. The HEVI scheme shows a second-order temporal convergence, as expected. The results of the HEVI scheme are qualitatively comparable to those of the SSP-RK3 scheme. Moreover, the HEVI DG formulation can also be seamlessly extended to account for the second-order diffusion as in the case of the standard SSP-RK DG formulation. In the presence of orography, theHEVI scheme produces high quality results, which are visually identical to those produced by the SSP-RK3 scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling

A Discontinuous Galerkin (DG) finite element formulation is proposed for the solution of the compressible Navier–Stokes equations for a vertically stratified fluid, which are of interest in mesoscale nonhydrostatic atmospheric modeling. The resulting scheme naturally ensures conservation of mass, momentum and energy. A semi-implicit time integration approach is adopted to improve the efficiency...

متن کامل

Analysis of an Embedded Discontinuous Galerkin Method with Implicit-explicit Time-marching for Convection-diffusion Problems

In this paper, we analyze implicit-explicit (IMEX) Runge-Kutta (RK) time discretization methods for solving linear convection-diffusion equations. The diffusion operator is treated implicitly via the embedded discontinuous Galerkin (EDG) method and the convection operator explicitly via the upwinding discontinuous Galerkin method.

متن کامل

Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow

The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equa...

متن کامل

A flexible and efficient DG discretization for Numerical Weather Prediction

As a first step towards construction of a DG based dynamical core for high resolution atmospheric modelling, a semi-implicit and semi-Lagrangian discontinuous Galerkin method for the SWE on the sphere and for nonhydrostatic vertical slice equations is proposed and analysed. The method is equipped with a simple p-adaptivity criterion, that allows to adjust dynamically the number of degrees of fr...

متن کامل

Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions

To avoid the order reduction when third order implicit-explicit Runge-Kutta time discretization is used together with the local discontinuous Galerkin (LDG) spatial discretization, for solving convection-diffusion problems with time-dependent Dirichlet boundary conditions, we propose a strategy of boundary treatment at each intermediate stage in this paper. The proposed strategy can achieve opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014